Activation of muscarinic acetylcholine receptors enhances the release of endogenous cannabinoids in the hippocampus.
نویسندگان
چکیده
Endogenous cannabinoids (endocannabinoids) are endogenous compounds that resemble the active ingredient of marijuana and activate the cannabinoid receptor in the brain. They mediate retrograde signaling from principal cells to both inhibitory ["depolarization-induced suppression of inhibition" (DSI)] and excitatory ("depolarization-induced suppression of excitation") afferent fibers. Transient endocannabinoid release is triggered by voltage-dependent Ca(2+) influx and is upregulated by group I metabotropic glutamate receptor activation. Here we show that muscarinic acetylcholine receptor (mAChR) activation also enhances transient endocannabinoid release (DSI) and induces persistent release. Inhibitory synapses in the rat hippocampal CA1 region of acute slices were studied using whole-cell patch-clamp techniques. We found that low concentrations (0.2-0.5 microm) of carbachol (CCh) enhanced DSI without affecting basal evoked IPSCs (eIPSCs) by activating mAChRs on postsynaptic cells. Higher concentrations of CCh (> or =1 microm) enhanced DSI and also persistently depressed basal eIPSCs, mainly by releasing endocannabinoids. Persistent CCh-induced endocannabinoid release did not require an increase in [Ca2+]i but was dependent on G-proteins. Although they were independent at the receptor level, muscarinic and glutamatergic mechanisms of endocannabinoid release shared intracellular machinery. Replication of the effects of CCh by blocking acetylcholinesterase with eserine suggests that mAChR-mediated endocannabinoid release is physiologically relevant. This study reveals a new role of the muscarinic cholinergic system in mammalian brain.
منابع مشابه
Involvement of muscarinic system of the dorsal hippocampus on acute stress-induced spatial learning and memory enhancement in male mice
Introduction: The effects of stimulation and inhibition of muscarinic acetylcholine receptors in the dorsal hippocampus on spatial learning and memory in male NMRI mice after acute stress were investigated. Materials and Methods: Animals were divided into two subsets of stress and non-stress. Each subset consisted of: saline, atropine (a muscarinic acetylcholine receptor antagonist) (1, 5, and ...
متن کاملThe role of acetylcholine muscarinic receptors in the rat basolateral amygdala on morphine-induced place preference
Some studies have shown that acetylcholine muscarinic receptors involved in the opiate reward. In the present study, the effect of intra-basolateral amygdale (BLA) acetylcholine muscarinic like receptor agonist (physostigmine) and antagonist (atropine) on the acquisition of morphine-induced place preference has been investigated in male Wistar rats. For this purpose, two 22 gauges guide cannula...
متن کاملMuscarinic cholinergic receptors modulate inhibitory synaptic rhythms in hippocampus and neocortex
Activation of muscarinic acetylcholine (ACh) receptors (mAChRs) powerfully affects many neuronal properties as well as numerous cognitive behaviors. Small neuronal circuits constitute an intermediate level of organization between neurons and behaviors, and mAChRs affect interactions among cells that compose these circuits. Circuit activity is often assessed by extracellular recordings of the lo...
متن کاملThe role of acetylcholine muscarinic receptors in the rat basolateral amygdala on morphine-induced place preference
Some studies have shown that acetylcholine muscarinic receptors involved in the opiate reward. In the present study, the effect of intra-basolateral amygdale (BLA) acetylcholine muscarinic like receptor agonist (physostigmine) and antagonist (atropine) on the acquisition of morphine-induced place preference has been investigated in male Wistar rats. For this purpose, two 22 gauges guide cannula...
متن کاملFacilitation of Long-Term Potentiation by Muscarinic M1 Receptors Is Mediated by Inhibition of SK Channels
Muscarinic receptor activation facilitates the induction of synaptic plasticity and enhances cognitive function. However, the specific muscarinic receptor subtype involved and the critical intracellular signaling pathways engaged have remained controversial. Here, we show that the recently discovered highly selective allosteric M(1) receptor agonist 77-LH-28-1 facilitates long-term potentiation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 22 23 شماره
صفحات -
تاریخ انتشار 2002